雪と氷のQ&A
タグ:観察

Q84

雪の結晶の中の線の模様について

①雪の結晶の中の線の模様について 雪の結晶を拡大したのを見ていると、雪の結晶の中に線の模様が入っています。これは結晶が大きくなる過程でできる線なのですか?なぜ、きれいに線が現れるのでしょうか。結晶の表面が線に沿ってデコボコしているのかも気になります。 ②雪の観察する時、指先の防寒対策は? 雪や霜など早朝の寒い中、外に出て観察をしています。手は手袋で防寒していますが、メモを取ったり手先で細かい作業をする時は手袋を外さないといけません。手袋を取るとすぐに手が冷たくなり作業ができなくなるのですが、皆さんはどのように寒い外での研究をしているのですか?何かいい方法があれば教えてください。(氷博士になりたいにゃーこさん  / 栃木県・14歳)

① 雪の結晶の写真を見ると、結晶の内部に線状に伸びた線などさまざまな模様を見ることが出来ます。六角形の雪の結晶は、とても薄いのですが、決してペラペラの紙のようなものではなく、しっかりとした厚みを持つ氷の結晶になっています。写真で見られる模様は、この氷の結晶の内部に出来ているのではなく、結晶の表面にある凸凹が模様となって見えているのです。すなわち、顕微鏡などで結晶を見るときは結晶の後ろから照明の光を当てますので、表面の凸凹が影になって見えるのです。この凸凹が出来る理由は、結晶が成長する時に結晶の尖ったところや角のところから成長しやすいと言う性質があることと関係があります。特に、筋状の模様は、結晶の角や枝の先端が伸びる時にその成長の痕跡として残されることがあります。、結晶は、成長してそのサイズが大きくなるとともに、外形も結晶の表面もだんだん複雑な構造を取るようになり、結晶外形だけではなく内部にも綺麗な模様が出来上がるのです。しかし、凸凹と言っていますが、結晶の表面が実際には凸なのか、凹なのかは、実は簡単には判別できません。これを調べるには、普通の顕微鏡ではなく、結晶の表面で反射してくる光で観察できるような特殊な顕微鏡を使うことが必要です。さらに、凸凹の深さを測るには、光の波の長さを基準として測定することができる干渉顕微鏡と呼ばれる精密な測定装置なども必要です。この凸凹の謎を解明するために、今も観察を行っている研究者もいます。

 最後に、少し難しくなりますが、結晶の外形や内部の模様ができるしくみは、「結晶形の形態不安定化」と呼ばれます。結晶は、本来は平らな面で囲まれた多面体の形をしています。この多面体の形を保ったままで成長する場合は安定成長と言います。一方、雪の樹枝状結晶のように、結晶が成長するとともに外形がだんだん複雑になっていくような場合は不安定成長と呼びます。安定成長が不安定成長に移り変わるしくみが形態不安定化で、結晶の形や模様を研究する上で非常に大事な考え方になっているのです。

② また、雪や霜の結晶を野外で観察するときには、どうしても手がかじかんでしまって、うまくいかないことがよくありますね。分厚い手袋をはめてしまうと、メモを取るときや細かな作業をするときには、いちいち手袋を外さないと出来ません。これで絶対大丈夫という解決法は実は無いのですが、私達は白い薄手の綿手袋をはめたりしています。これを使うと、指先が比較的自由に使えますので、いちいち手袋を外すことも不要になります。しかし、防寒には十分ではありませんので、防寒用の厚い手袋もそばにおいておくと良いと思います。

 また、雪や霜の結晶を観察するときには、黒い布(私達は、ビロードという毛羽立った布)を30cm角ぐらいの板に貼り付けたものを用意します。この板で雪や霜の結晶を受け止めるのです。そうすると、コントラストが付いて結晶をとても見やすくなります。さらに、面相筆(できるだけ穂先の細い筆)を用意すると、結晶にさわったり、ひっくり返したりすることが容易にできます。また、穂先に引っ掛けると、結晶を顕微鏡のステージにのせるときや、結晶のレプリカ作成などの作業にも役立ちます。このような方法は、中谷宇吉郎先生たちが90年前に雪の結晶の研究を始めた頃から使われていました。こう言うと進歩がないように思えますが、実は寒い野外での作業であることを考えると、もっとも合理的な方法なのです。防寒に気をつけながら、いろいろと工夫して、雪や霜の結晶の観察にチャレンジしてみてください。

(回答掲載日:2024年1月26日)

#雪の結晶#雪#観察#雪の不思議
Q33

氷の分子は目で見られる?

特殊な顕微鏡などを使えば、氷の分子を実際に目で見ることはできますか?氷の分子は本当に六角形に手を繋いでいるような形になっているのか自分で見てみたいです。(雅紀さん / 東京都・15歳)

 顕微鏡と言えば、肉眼でレンズを覗き込む光学顕微鏡を思い浮かべます。しかし、近年ではさまざまなタイプの顕微鏡が開発されていて、中には原子や分子が観察できると謳ったものもあります。しかし、原子や分子と言っても、例えばボールのような固体がどんどん小さくなったものではありません。原子の構造は、中心に原子核があってその周囲を電子が雲のようにまとわり付いているというイメージです。したがって、このような原子あるいはいくつかの原子が結合してできた分子が「見える」とは言っても、ボールを見るようにその実物が見えるわけではありません。いくつかのタイプの顕微鏡について、見えるというのはどういうことかを考えてみましょう。

 最初に光学顕微鏡を考えてみましょう。これは、光は波であることを使って、レンズによる光の屈折により観察物を拡大して見えるようにしています。したがって、光の波長よりも小さなものは、原理的には見ることができないという限界があります。人間の目で観察できる光(可視光)の波長は、せいぜい400nm(0.0004mm)程度ですので、どんなに工夫をしてもこれより小さなものは見ることできません。原子や分子の大きさは、せいぜい0.1〜1nm(水分子の大きさは、0.37nm)ですので、光学顕微鏡で見える限界の1/1000の大きさです。すなわち、光学顕微鏡では原子や分子を見ることは不可能です(下記の注を参照)。

 それでは、光よりも短い波長を持つもので観察したら、もっと小さなものを見ることができるのではないかと、当然思います。こうして開発されたのが、光の代わりに電子線を使う電子顕微鏡です。電子線の波長は、可視光の1/1000程度ですので、原子や分子の大きさにほぼ匹敵する長さになります。すなわち、電子顕微鏡を使うと、大きめの原子や分子は見る事ができる可能性がでてきますが、かなり小さな部類に入る水分子を見るのはそれでもかなり困難です。また、大きめの原子や分子が見えると言っても、超強力な電子線を発生できる特別な電子顕微鏡を使わないと実際には難しいので、誰でも使えるわけではありません。

 一方、走査型トンネル顕微鏡(STM)、あるいは原子間力顕微鏡(AFM)と呼ばれる顕微鏡ではどうでしょう。これらの顕微鏡は、先端が鋭く尖った針で観察物の表面をなぞり、その表面の凸凹の状態を検知するものです。針の先端で感じた表面の凸凹の情報を再構築してモニター画面上に表示できるように工夫しています。私たちも、物体の表面を指先でなぞると、その表面の凸凹を感じることができる場合がありますが、この方法は意外と敏感なのです。その感度を十分に上げてゆくと、結晶表面の原子や分子の並び具合さえ検出することができます。しかし気をつけたいのは、この顕微鏡では実際に原子や分子が見えたということではなく、表面の凸凹の分布から原子や分子の存在や配列の様子を読み取っているということです。現在、世界最先端の性能を持つ顕微鏡では、氷の表面での水分子の分布を検出できる可能性があることが知られていますので、近い将来氷の表面で水分子が配列している様子を検出できるかもしれませんね。

 

(注:光学顕微鏡では、原子や分子を見ることは原理的にできません。しかし、2つの光の波が到達する時間の違い(位相差と言います)をうまく使うと、結晶表面などにある原子1個分の“段差”を観察できます。北海道大学低温科学研究所の佐﨑元先生のグループでは、この原理を使った世界最先端の光学顕微鏡を開発して、氷結晶の表面での水分子1個分の段差を観察しています。詳しい紹介は、Q14の答えを参照してください。)

(回答掲載日:2022年1月7日)

#観察

Q&A検索

Q&Aは検索けんさくができます。
検索けんさくは「キーワード」「カテゴリー」「タグ」の3つの方法ほうほうがあります。

キーワード検索

キーワードを入力して検索けんさくしてください。
カテゴリーをえらぶとそのカテゴリーのなかからキーワードと一致いっちするQ&Aをさがすことができます。

カテゴリー検索

になるカテゴリーをえらんでください。
そのカテゴリーにてはまるQ&Aをさがすことができます。